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Abstract

The complex relat ion between part ic le arr ival stat ist ics and the
i n t e r a r r i v a l s t a t i s t i c s i s e x p l o r e d . I t i s k n o w n t h a t t h e m e a n
interarrival time given an initial velocity is generally not the inverse of
the mean rate corresponding to that velocity. Necessary conditions for
the measurement of the conditional rate are given.

Introduction

The problem to be dealt with is that in a sparsely seeded flow, the
probability of recording a velocity v depends on:

(1) the probability of the velocity v appearing in the
measurement volume.

(2) t h e p r o b a b i l i t y o f a p a r t i c l e a r r i v i n g a t t h e
measurement volume when the velocity is v .

(3) the probability of detecting a velocity from a particle
of velocity v even if it passes through the volume.

(4) the probability of recording a measurement.

In general, all of the latter effects depend on the velocity itself. For
example, for a flow with uniform spatial seeding, the higher speeds will
carry more particles per unit time through the measurement region
than will the slower speeds. Also, for various reasons, the electronics



are less likely to record a higher speed particle than a lower speed one
{Durao and Whitelaw (1979), Durao, Laker and Whitelaw (1980)}. If
one records a histogram of measured velocities at a fixed point, p

m
(v) , it

is related to the Eulerian velocity distribution by an equation of the
form

P v N p v h v
m

( ) ( ) ( )

where N is the total number of measurements, and h(v) is the
conditional probability of recording a measurement if the velocity is v .
Another interpretation of the term h(v) is the relative measurement
rate for the velocity v . It has been written {Edwards and Jensen
(1983)}

h v
r v

r
m

m

( )
( )

where r
m

(v) is the measurement rate for velocity v and <> denotes
expected value.

Under the best of circumstances, h(v) is difficult to compute {Buchhave
(1975)}. Worse, the assumptions one has to make to compute h(v) are
often not valid. Many times the seeding particle density is not uniform.
Under these circumstances, any correction applied to eliminate the
effect of h(v) may actually bias the data more. Problems of this type
were noted by {Hoesel and Rodi (1977)}. They pointed out that
residence time correction was inappropriate unless the particle density
was uniform. They went on to suggest that if the particle density could
not be assumed to be uniform, then residence time weighting is not
appropriate. One should attempt to measure h(v) by looking at the
particle interarrival times.

Statistics of Particle Interarrival Time

If the flow is steady and the seeding is uniform the probability of the
time t between particles is of the form

P r v e
I

r v( ) ( ) ( )

where r(v) is the mean arrival rate corresponding to the velocity v . This
follows readily from the fact that the volumetric distribution of the
particles follows a Poisson distribution. In general r(v) can be written

r v v A v( ) | | ( )
r
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where is the particle density and A( )
r
v is the effective measurement

volume cross section. It has the dimensions of area and is positive
definite. The cross section can be a function of flow angle.

For this steady flow, the average interarrival time t
v

is given by

v
r v( ( )) 1

For a turbulent flow, the situation is more complex since the relevant
probability is the conditional probability of an interarrival time t

v
if

the initial velocity is v . It is not possible to give a global computable
expression for the function, however the asymptotic behavior is known.
At times small compared to the microscale t

M
, the expected rate remains

r(v) and at times larger compared to the microscale, the flow is
uncorrelated with v and thus the expected rate becomes <r> . An
approximate form for P

I
(r,v) the probability of an interarrival time

given the initial velocity v can be derived using the methods described
in {Edwards and Jensen (1983)}. However, for illustrative purposes, a
much simpler form can be used, i.e. ,

P v

r v

r v rI
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M
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This form ignores the expected variance in rate for long times, but that
effect is demonstrably small. Figure 1 shows some forms of this function
for various mean rates and initial velocities. Using this formula, the
mean interarrival time, given the initial velocity v is given by

v

M M
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r v
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Clearly, the mean interarrival time is not simply the inverse of the rate.
For instance, when the expected arrival rate r(v) approaches zero, the
mean interarrival time does not approach infinity. This reflects the fact
that the velocity only stays near any given value for a time on the order
of t

M
. The asymptotes are:
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Only in the second, high particle density, case does t
v

appear to look like
the inverse of r(v) . For the more typical, low particle density case, the
mean interarrival time is a weak function of v . See Table 1 for a more
detailed examination of the variation of t

v
with rate.

The weak dependence of <t
v
> on r

v
is apparent in the measurements of

{Durao, Laker and Whitelaw (1980)}. In their measurements, they
included a non-negligible reset time, but this complication does not
negate the above explanation of the measurement results.

Effect of Instrumentation

As has been noted in many articles {Durao, Laker and Whitelaw (1980),
Edwards and Jensen (1983), and Meyers and Clemmons (1979)} the
particle arrival rate is not the same as the measurement rate. The use of
Bragg cells, the existence of counter reset times, etc., can all alter the
recorded statistics. This result is a measurement rate for a velocity v ,
r
m

(v) , that is different from r(v) . In the rest of this presentation, the
rate r

m
(v) will be used. A general derivation for the statistics of any

instrumentation set up cannot be given, however as before a few general
statements can be made:

(1) The expected rate for times short compared to tM , will
be rm(v) .

(2) The expected rate for times large compared to tM will
be <rm>.

Recall that r
m

(v) is a conditional probability so that the times referred
to above mean the times after the occurrence of v in the flow.

The difference between r
m

(v) and r(v) can be illustrated by examining
some data taken by Stevenson, Thompson, Bremmer and Roesler. In
that study, they make velocity measurements in a turbulent flow while
varying the effective particle density. The data collection system had a
reset time (dead time) that was shorter than the flow correlation time.
As the particle density increased past the point where the product of the
arrival rate and the reset time exceeded one (saturated), the measured
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means changed. See figure 2. This clearly indicated a change of the
measured statistics from those of the particle arrival statistics.

{Edwards and Jensen (1983)} derived an approximate form for h
m

(v) for
a system with a reset time T . viz.

h v
r v

r

r T

r T R r v Rm

T T

( )
( ) ( )

( ( ) ( ) )

1

1

where R R d
T

T

0

( ) , R( ) is the velocity autocorrelation function, and

is a normalization constant. Again one can gain some insight into the
expected behavior by considering the asymptotic behavior of this
expression.

T << T
c

= R
T=¥ , The Integral Correlation Time

Under this condition, RT T . Then

h v
r v

r

r T

r v Tm
( )

( ) ( )

( ( ) )

1 1

1

(1) If r(v)T >> 1, many particles arrive during the reset
time. Then hm(v) = 1, there is no effect of the particle
arrival statistics.

(2) If r(v)T << 1, few particles per reset time, then

h v
r v

r
( )

( )

The part ic le arr iva l stat is t i cs are apparent in the measurement
statistics. The solid line in Figure 2 reflects this change in the statistics
as the arrival rate is varied.

T >> T
c

This corresponds to a reset time longer than the flow correlation time.
Then

R R T
T c

At this asymptote,
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For either r(v)T >> 1 or r(v)T << 1, the particle arrival statistics are
reflected in the measurement rate.

For reset times longer than the flow integral time scale, the measured
rates behavior is vast ly dif ferent from the behavior of the mean
interarrival time. With a large reset time, the interarrival probability
function only contains information about the mean flow. Using the
assumptions used earlier,

P
r e T

I

r

( )
for

otherwise0

With this probability function,
v
/< > = 1. This is clearly shown in

{Durao, Laker and Whitelaw (1980)} results for a reset time larger than
the flow correlation time.

The meaning of the above is that although a system with a reset time
larger than the flow correlation time will have a mean interarrival time
that is independent of the initial velocity, the mean arrival rate is not
independent of the original velocity. To understand how this can
happen, one must realize that the interarrival time distribution is a
reflection of the conditional probability of another measurement if a
measurement of v is obtained. On the other hand, the measured rate,
r
m

(v) is a reflection of the probability of getting the initial measurement
of v .

Measurement of r
m

(v)

As was shown above, one cannot measure r
m

(v) (and thus h(v)) by
measuring the mean particle interarrival times. Even worse, if there is
a dead time larger than the flow correlation, one cannot determine r

m
(v)

from the interarrival time statistics. However it is conceivable that
estimates for r

m
(v) can be obtained by examining the data rate for times

that are small compared to the microscale.

For a steady flow, it is easy to measure r
m

(v) . One simply picks a time
interval ∆t and for successive non-overlapping intervals, measure the
number of measurements one gets. The mean number of measurements
divided by the time ∆t is an estimate of the rate r

m
(v) . Roughly, if N

v
is

the total number of measurements, the relative error in the estimated
rate is (N

v
)
- 1 / 2

. This follows if each measurement is independent. For

6



some circumstances such as a saturated detector, {Edwards and Jensen
( 1 9 8 3 ) } o r m u l t i p l e m e a s u r e m e n t s o f t h e s a m e p a r t i c l e , e a c h
measurement is not independent and thus the relative error will be
larger.

For a turbulent flow, the velocity is not constant and the probability of
getting two or more measurements of the same velocity with a laser
anemometer is very small. However if one makes a histogram of the
measured velocities using a finite number (say K) of non-overlapping
ranges, one can arrange the divisions so that each range contains at
least two measurements. The rate estimates can be performed for each
interval of the histogram.

Selection of Histogram Intervals

In the worse case, an estimate of the worse fractional change of the rate
over a velocity range Dv

H
, is Dv

H
/v

M
, where v

M
is the average velocity in

the interval. This assumes a rate proportional to the velocity as
exemplified by McLaughlin and Tiederman's one dimensional models.
Most other models give a weaker dependence on velocity. Let Dv

R
be the

range of measured velocities, or 4 standard deviations, whichever is
larger. The change in rate in each interval compared to the change in
rate across the entire velocity range is roughly Dv

H
/Dv

R
.

For a real data set with a finite number of measurements, the above
considerations place contradictory requirements on the selection of
Dv

H
, the width of the histogram intervals. Accurate estimation of rate in

each range demands a large number of sample measurements and thus
as large a Dv as possible. On the other hand, accurate resolution of the
change of rate across the measured range, Dr

R
, requires a small Dv

H
. We

do not know of a procedure for optimizing Dv , but experimentally have
settled on Dv

H
/Dr

R
= 1/9.

A detailed exposition of one procedure for estimating r
m

(v) and thus of
deriving the true Eulerian velocity probability distribution, p(v) , from
the measured distribution is given in a companion paper by J. Meyers.

Sample and Hold

Processing the recorded data by a sample and hold scheme is exactly
equivalent to estimating integrals of the velocity by a forward step
integration algorithm. One holds the previous velocity value until a
new one is obtained. {Dimotakis (6)} had proposed a backward step
algorithm for use in the situation of many measurements per flow
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correlat ion time. There is no essential di f ference in the results
obtained for a forward or backwards integration scheme. If the average
of the measurement per f low correlat ion time is smal l , then the
approximation to integration fails. However, when the measurements
per flow correlation time is large, the approximate integration schemes
are good approximations to the continuous integrals {Edwards and
Jensen (1983)}. When these latter conditions are obtained, sample and
hold processing or the method suggested by Dimotakis is clearly the best
method to use. The particle statistics are avoided.

Conclusions

The measured arrival statistics for laser anemometers in sparsely
seeded flow is indeed complex. No theory can adequately predict these
statistics as many uncontrollable and unmeasurable variables in the
system can influence the statistics to an important degree. Therefore
u n l e s s t h e r a t h e r s p e c i a l i z e d a n d r a r e c o n d i t i o n s o f m a n y
measurements per flow correlation times are obtained, one should not
use any of the previously proposed corrections .

The mean interarrival time between measurements given an initial
velocity v is related to the mean measurement rate in a complex manner.
I n s o m e c a s e s w h e r e t h e m e a s u r e m e n t s y s t e m c a n n o t r e c o r d
measurements in a time shorter than the flow correlation time, the
mean measured interarrival time is a constant. This effect can be used
to get an order of magnitude estimate of the flow correlation time.

If the measurement system is capable of measuring particles separated
in time by less than the flow microscale time, it is possible to measure
the required correction function. This can be done by measuring the
measurement rate for each velocity in time ranges that are small
compared to the correlation time of the flow.
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0.0 1.005 1.25 5.55

0.1 1.004 1.23 4.56

0.5 1.002 1.13 1.96

1.0 1.000 1.00 1.00

1.5 0.998 0.87 0.67

2.0 0.995 0.74 0.50

Table 1.- Variation of v/< > with rate for various mean rates.
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Figure 1.- Approximate condit ional probabil i t ies for the interarrival t ime

given the init ial velocity as a function of apparent part icle concentration.

The flow correlation time in each figure is 10.

Figure 2.- Velocity vs Data Rate at Location A.
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